previous ---- Cover


I don't want to forget my foot. It has stayed here in this universe we know and love while my mind has wandered somewhere else. Now I think of my foot and know I should return here and look around. Can I find anything that supports my strange thoughts? Does what our universe looks like indicate that Never Never Land may really exist?

I have invented what I call the Never Never Land Theory – what I will call “My Theory”. Perhaps the best known theory about reality and our universe is the Big Bang Theory – the BBT. Can I show that my theory is better than the BBT?

Albert Einstein's Theory of Relativity did not replace classical physics and Newton's Laws of Motion. For most of the world we see around us, classical physics was, and still is, adequate. For almost all practical purposes, it is just as good as Einstein's theory. Why then is Einstein's Theory considered a better view of reality than that provided by classical physics? Why is it considered superior?

The short answer is Einstein answered questions that classical physics did not. Classical physics could not, for example, explain where the sun got enough energy to shine for five billion years. The answer, nuclear energy, was not just academic – it led to massive industries in our real world.

In the same sense, I want to show that my theory is superior to the BBT. Then we can see if there are practical benefits.

I need to relate to you what I think our BBT experts see when they look at our universe. There are a lot of these experts. I don't think they are all saying the same thing. When they find things their equations do not explain, they often speculate. These interesting speculations are neither more nor less valid than yours or mine.

I am tired. I am tired of thinking longer and harder. I am tired of googling obscure words and topics. I will write in English, not incomprehensible mathematical equations. The results will be that some of the details may be wrong, or, at least, not exactly right. Feel free to improve on what I write – but when you are finished, ask yourself: Does what we observe point to our experts' view of reality or a Never Never Land?

If we gaze out into the universe, we are looking into the past. When we look at Jupiter, we see the light that was reflected from its surface, perhaps an hour ago. We are seeing Jupiter as it was an hour ago. When we look at a far away galaxy, we are seeing it as it was several billion years ago. We are seeing this galaxy as it was when it was part of a smaller universe.

Our scientists believe that the first galaxies formed about a billion years after the Big Bang. The universe was much larger than a grain of sand, but much smaller than it is today. These far away, dim galaxies are at the outer range of our most powerful telescopes. You would expect that since the universe was smaller then, the galaxies would be more closely packed. Yet this doesn't seem to be the case.

The expansion of the universe started everywhere and is still going on. The BBT experts believe this because they see ancient, far away galaxies no matter which way they point their telescopes. My theory believes the universe is expanding everywhere, but it did not start. But I am getting ahead of myself.

Our BBT experts think in terms of a minimum time, a minimum distance, and a minimum size. When they see every galaxy in sight moving away from what they think is a central point, they can imagine a time when everything was closer together and more condensed. With lots of calculations, they have determined that everything was in the same place about 14 billion years ago. Assuming there is a minimum size, our Science has calculated the density and temperature of our universe when it was about the size of a grain of sand. Both were close to infinity. Today, with galaxies spread all over the place, it is hard to determine the density of the universe. On the other hand, after some impressive measurements and calculations, science has made a major discovery. The calculated temperature, after 14 billion years of expanding and cooling, of our universe is almost exactly equal to the measured value. The experts have excitingly claimed that this result proved the Big Bang Theory. Our cosmic-sized universe had started as a microscopic dot. If there is no minimum time and size, my theory must duplicate these results before moving on to explain phenomenons that BBT fails to adequately address.

The BBT experts were excited about the Cosmic Microwave Background (CMB) radiation, the remnant heat left after the universe has been expanding for 14 billion years. Its measured value is slightly above absolute zero – this agrees with the experts' calculations. Our science considers this CMB results a cornerstone of the BBT.

Our science believes that there are certain laws of nature that are universal. The speed of light, for example, is the same everywhere. We have mentioned the proton-electron mass ratio which our Science has shown is the same here and in a galaxy six billion light years away.

My theory predicts that CMB radiation is a law of nature – it is constant everywhere.

Radiation is the same as temperature. For clarity we can speak of the temperature of the CMB. My theory states that the temperature of the CMB is the same everywhere. The BBT believes the temperature of the CMB falls as the universe expands.

Can we decide which view is correct? Maybe.

We need “fair” measurements of CMB. Some could be close by, but some might have to be near the outer bounds of the observable universe. Astronomers observing the universe without preconceived notions might be able to do the impossible.

The BBT believes the universe started as a microscopic dot and was soon the size of a grain of sand. If this grain of sand universe were here and now, it might blow past our face and settle on a yardstick. It might come to rest between the smallest graduations – two lines set a tenth of an inch apart.


previous ---- Cover